
Enabling Reconstruction of Attacks on Users
via Efficient Browsing Snapshots

Phani Vadrevu∗, Jienan Liu∗, Bo Li∗, Babak Rahbarinia†, Kyu Hyung Lee∗, and Roberto Perdisci∗
∗ Department of Computer Science, University of Georgia, USA

† Department of Computer Science, Auburn University in Montgomery, Alabama, USA
{vadrevu,jienan,boli,kyuhlee,perdisci}@cs.uga.edu, babak@aum.edu

Abstract—In this paper, we present ChromePic, a web browser
equipped with a novel forensic engine that aims to greatly enhance
the browser’s logging capabilities. ChromePic’s main goal is to
enable a fine-grained post-mortem reconstruction and trace-back
of web attacks without incurring the high overhead of record-and-
replay systems. In particular, we aim to enable the reconstruction
of attacks that target users and have a significant visual component,
such as social engineering and phishing attacks. To this end,
ChromePic records a detailed snapshot of the state of a web
page, including a screenshot of how the page is rendered and a
“deep” DOM snapshot, at every significant interaction between
the user and the page. If an attack is later suspected, these fine-
grained logs can be used to reconstruct the attack and trace back
the sequence of steps the user followed to reach the attack page.

We develop ChromePic by implementing several careful
modifications and optimizations to the Chromium code base, to
minimize overhead and make always-on logging practical. We
then demonstrate that ChromePic can successfully capture and
aid the reconstruction of attacks on users. Our evaluation includes
the analysis of an in-the-wild social engineering download attack
on Android, a phishing attack, and two different clickjacking
attacks, as well as a user study aimed at accurately measuring the
overhead introduced by our forensic engine. The experimental re-
sults show that browsing snapshots can be logged very efficiently,
making the logging events practically unnoticeable to users.

I. INTRODUCTION

Web browsers have unfortunately become the preferred
entry point for a large variety of attacks. For example, through
the browser, a user may be exposed to malware infections via
social engineering attacks [29] or drive-by downloads [13],
phishing attacks [9], cross-site scripting [45], cross-site request
forgery [4], clickjacking [14], etc.

While the mechanics of these attacks (i.e., how they are
typically executed within the browser) are well understood, it
is often challenging to determine how users arrived to a given
attack page in the first place. At the same time, tracing back the
steps through which an attack unfolds can be critical to fully
recover from an intrusion [17] and prevent future compromises.
For instance, security analysts and forensic investigators often

try not only to understand how a specific attack instance
was executed (e.g., find the URL from which malware was
downloaded), but also attempt to put the attack into context
by reconstructing the steps that preceded it [28] (e.g., whether
the user fell for a social engineering attack and inadvertently
triggered the malware download). While existing browser and
system logs may assist in reconstructing a partial picture of
how an attack page was reached, these logs are often sparse
and do not provide sufficient details to precisely reconstruct
the events preceding the user landing on the attack page, and
what exactly happened afterwards.

Quoting [20], “we tend to lack detailed information [about
an attack] just when we need it the most.” Therefore, to enable
a detailed reconstruction and trace-back of web attacks we
need enhanced logging capabilities [18], [20], [26]. For in-
stance, systems such as ClickMiner [27] and WebWitness [28]
rely on full network traffic logs (or traces) and deep packet
inspection to reconstruct the sequence of pages visited by
users before they reach an attack page (e.g., a malware
download URL). However, even by using full traffic traces,
these systems are sometimes unable to precisely reconstruct
all steps that brought a user to encounter an attack page, due
to the complexity of modern web technologies and the conse-
quent discrepancies between system events (e.g., user-browser
interactions) and the network traffic they generate [27], [28].
Furthermore, encrypted (e.g., HTTPS) traffic would all but
prevent these systems from inferring the complete path to
the attack page. Other approaches, such as ReVirt [11] and
WebCapsule [26], go beyond network traffic logging and
analysis, and instead focus on recording fine-grained details
at the system level to enable full attack replay. However,
whole-system record-and-replay [10], [11] is computationally
expensive, and is especially difficult to deploy on resource
constrained mobile devices. On the other hand, while in-
browser record-and-replay [26] can be more easily ported to
mobile devices, it is hindered by difficulties introduced by
OS-level non-determinism (e.g., due to thread scheduling) and
can result in an inaccurate replay of browsing sessions [26],
thus preventing reliable attack reconstruction. Furthermore,
to enable replay, record-and-replay systems typically require
storing large amounts of information, including all network
traffic generated by the browser.

In this paper, we present ChromePic, a web browser
equipped with a novel forensic engine aimed at greatly en-
hancing Chome’s logging capabilities. ChromePic’s main goal
is to enable a fine-grained reconstruction and trace-back of
web attacks without incurring the high overhead typically as-
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sociated with record-and-replay systems such as [11], [26]. In
particular, we aim to enable the reconstruction of attacks that
target users and have a significant visual component, such as
social engineering and phishing attacks. To this end, we focus
on instrumenting Google Chromium [37] (the open source
project on which the Chrome browser is based) to efficiently
record a browsing snapshot at every meaningful interaction
between the user and the browser. For example, every time
the user clicks on a page or presses a key (e.g., Enter),
we record the input information (e.g., mouse coordinates, key
code, etc.) and the page URL shown in the browser bar.
Furthermore, we take a screenshot of the rendered page, and
a “deep” snapshot of the related DOM tree and embedded
resources (e.g., iframes, images, etc.). We refer to this type
of detailed browsing snapshots as webshots. Intuitively, such
rich logs would allow a security team or forensic analyst
to travel back in time and effectively reconstruct a user’s
browsing actions over a desired time window. In fact, we
can consider the screenshot contained in each webshot as a
“video frame.” These screenshots can then be stitched back
together to reconstruct precisely what the user saw during
every significant interaction with the browser. Furthermore,
each screenshot is associated with the related full state of
the DOM (including embedded objects and JavaScript source
code) recorded at the very same instant in time. Namely, we
record exactly how a specific page DOM was structured, how it
was rendered at the time of a user-browser interaction, and how
the user interacted with it, thus enabling an analysis of how the
attack was implemented. Our ChromePic browser addresses
the following challenges:

• Forensic Rigor: Our main goal (and challenge) is to
enable webshots to be taken synchronously with user-
browser interactions. Namely, let u(t0) represent a user-
browser interaction u (e.g., a mouse click or key press)
that occurs at time t0. Because we aim to prevent any
(potentially malicious) JavaScript code that listens on u
from altering the page before the webshot is taken, our
goal is to “freeze” the processing of u until we take both a
screenshot of the page currently displayed by the browser
as well as a full DOM snapshot. Only after the snapshot
is completed the event u will be released and processed
by the browser. The need for this synchronous snapshots
constraint is motivated by the fact that we intend to
prevent any discrepancy between what is logged in the
webshot and what the user saw (and the DOM of the
page he/she interacted with) at the very instant of time t0
when the event u occurred.

• Efficiency: As attacks cannot be easily predicted,
ChromePic aims to be always-on and continuously log
webshots. This allows us to record undetected (and
unexpected) attacks, in accordance with the compro-
mised recording design principle [31]. However, to make
always-on logging practical, efficiency is critical and
logging overhead must be reduced to a minimum. In
particular, because webshots are taken synchronously with
each user input, we effectively introduce a processing
overhead that increases the natural processing of input
events. Therefore, the challenge we face is to make sure
that no negative effect (e.g., latency) will be perceived by
the user. Based on previous studies on human-computer
interaction [44], we target a logging time budget of around

150ms, which would make the logging events practically
unnoticeable to users. To this end, we implement a
number of careful system-level browser modifications and
optimizations, which we describe in detail in Section IV.

• Transparency: We require webshots to be taken in a
transparent way w.r.t. the web pages that are being logged.
For instance, there should be no easy way for (malicious)
javascript code running on a page to detect whether the
interactions (inputs) between the user and the page are
being logged or not. In addition, webshots should also
be transparent to users, in that once they are enabled the
user should not notice any difference in the behavior of
the browser when webshots are being recorded.

In Sections IV and V we discuss why the existing snapshot-
taking capabilities currently implemented by Chromium do
not satisfy the above requirements. For instance, we describe
the implementation of a browser extension that attempts to
meet the same requirements described above using the existing
extension API, and demonstrate why such a solution is not
viable.

The reader may notice that because ChromePic contin-
uously records detailed information about the state of the
browser, including visual screenshots, our system may produce
numerous logs, some of which may include sensitive infor-
mation. While protecting the security and privacy of the logs
recorded by ChromePic is outside the scope of this paper, it
is important to notice that existing solutions could be used to
mitigate these concerns. For example, sensitive URL whitelist-
ing and log encryption using a key escrow as proposed in [26]
could also be used in ChromePic. We discuss these solutions
in more details in Section VIII. Also, while a typical browsing
session may result in numerous webshots, often the changes
to a page between two consecutive user-browser interactions
are minimal, thus resulting in few changes between snapshots.
This provides an opportunity for storing only the difference
between snapshots. In addition, the visual screenshots can
be reduced in size using lossy compression, and the overall
storage requirements for the logs of each browsing session
could be further reduced using standard archiving tools. We
discuss storage requirements in more details in Section VII.

In summary, we make the following contributions:

• We propose ChromePic, a web browser equipped with a
novel forensic engine that aims to enable the reconstruc-
tion and trace-back of web browser attacks, especially for
attacks that directly target users and have a significant vi-
sual component, such as social engineering and phishing.

• We develop ChromePic by implementing careful modifi-
cations and optimizations to the Chromium code base, to
minimize overhead and make always-on logging practical.
In addition, we discuss why implementing ChromePic
using existing facilities, such as Chrome’s extension API,
is not a viable option.

• We demonstrate that ChromePic can successfully capture
and aid the reconstruction of attacks on users. Specifically,
we report the analysis of an in-the-wild social engineering
download attack on Android, a phishing attack, and two
different clickjacking attacks.
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• We evaluate the efficiency of our solution via a user study
involving 22 different users who produced more than 16.5
hours of browsing activities on hundreds of websites.
We provide precise measurements about the overhead
introduced by ChromePic on multiple devices, including
desktop and laptop Linux systems as well as Android
tablet devices. Our results show that the vast majority
of webshots can be taken very efficiently, making them
practically unnoticeable to users.

II. WEBSHOTS

As mentioned in Section I, we aim to enable the re-
construction and trace-back of web attacks that target users,
with particular focus on attacks that have a significant visual
component, such as social engineering and phishing attacks. To
this end, we design ChromePic to embed an always-on forensic
engine. Specifically, we instrument the Chromium browser
to record rich logs, called webshots, that aim to capture the
state of the rendered web pages at every significant interaction
between the user and the browser.

A. What is a WebShot?

A webshot consists of the following components: (i) a
timestamp and other available details about the user input event
that triggered the webshot (e.g., mouse event type and related
screen coordinates, keypress code, etc.); (ii) the full URL of
the page with which the user interacted; (iii) a screenshot of
the currently visible portion of the web page (the viewport)
rendered by the browser; (iv) a “deep” DOM snapshot that
consist of the page’s DOM structure, all embedded objects
(e.g., the content of all images), the DOM and embedded
objects of all iframes, the JavaScript code running on the
page, etc.

To satisfy the forensic rigor requirement mentioned in
Section I, webshots must be taken synchronously with the
triggering user input. This requirement, along with the always-
on operational goal for our ChromePic system, has a significant
impact on the amount of overhead we can afford for producing
each webshot. In Section IV, we describe a set of very careful
code instrumentations and optimizations that make efficient
webshots feasible.

B. Input Events that Trigger a WebShot

WebShots are triggered by user interactions with web
pages. In theory, we could take a screenshot for every single
“raw” user input event, including every mouse movement,
every key-down event, every tap or gesture on a touchscreen,
etc. However, many user input events (e.g., most mouse
movements) have no real changing effect on the underlying
web page. Furthermore, to reduce overhead, it is desirable to
minimize the type and number of events that actually trigger
a webshot. At the same time, our goal is to capture enough
webshots to allow for the reconstruction and trace-back of
possible attacks. To balance these conflicting goals, we trigger
a webshot for each of the following events:

• Mouse Down: Mouse clicks are a common interaction
between users and web pages. Clicks often have important
consequences, such as initiating the navigation to a new

page, submitting a form, selecting a page element, etc.
As each click starts with a mouse down event, we trigger
a webshot for each such event.

• Tap: On touchscreen devices, taps are the initial event
for a variety of gestures, including “clicking” on a link
or button. Therefore, a tap often (though not always) has
an effect similar to a mouse down event. Therefore, we
trigger a webshot at every tap event.

• Enter Keypress: In many cases, pressing Enter has
the same effect as a mouse click, such as submitting a
form, navigating to a new link, etc. Therefore, we trigger
a webshot at every keydown event for the Enter key.

• Special Keys: We also trigger a screenshot every time
a special key is pressed. For example, pressing tab
while entering data in a form usually allows to transition
from an input field to another, thus indicating that the
previous field has been fully entered. Other keys (e.g.,
the space bar) may be used to scroll a page or pause/start
a video, or to navigate to the previous page (e.g., using
the backspace). We have selected a total of five special
keys whose raw keydown event triggers a webshot.

• Generic Input Events: All other input events, such as
mouse movements, mouse wheel, key presses, etc., that do
not fall within the above categories are also considered.
Specifically, we trigger a webshot for each “generic”
event, but impose a time constraint: if the previous
webshot has been taken more than a predefined number of
seconds ago (e.g., 5 seconds), we take another webshot,
otherwise we skip this event (i.e., no webshot is taken).
Notice that this time constraint only applies to “generic”
input events, and to the case when a key is kept pressed.
For all other single events mentioned earlier (e.g., mouse
down, tap, etc.) we always take a webshot, regardless of
the time.

Webshots are logged synchronously with the triggering in-
put event, as required by the forensic rigor property introduced
in Section I. Effectively, the user input will be held from
processing until a full webshot is taken. In Section IV, we will
explain that because user inputs are processed on the render
thread of Chromium’s renderer process, this has the effect of
preventing the DOM of the page from changing before the
webshot is recorded. Hence, each webshot reflects what the
user saw at the moment of her interaction with the page. This
has the effect of preventing attempts from the attacker to hide
the attack by altering the log, for example by rapidly changing
the DOM and appearance of the page immediately after a user-
browser interaction.

III. USE CASES

In this section, we discuss a representative use case sce-
nario, to highlight how our system could be used in practice.
In general, we envision ChromePic to be particularly useful in
aiding the reconstruction and trace-back of attacks that involve
user actions, such as social engineering and phishing attacks.
In these cases, reconstructing what the user saw or what exact
information was entered on a phishing page is critical to
understand how the attack unfolded. We argue that these types
of attack are difficult to reconstruct without a visual account
of what the user experienced. ChromePic would ideally be
deployed in corporate and government network environments,
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where web-based attacks may represent the first step of larger
incidents (e.g., targeted attacks). At the same time, we believe
ChromePic may also be useful in other scenarios, such as in
web application debugging.

Example Use Case: Meet Bob, a corporate employee who,
while using the browser at work, falls victim to a social
engineering malware download attack [29] by clicking on a
misleading advertisement. Once installed, the malware opens
a backdoor to the corporate network, which is later used by
the malware owners to gain access to and exfiltrate sensitive
information, triggering a data breach detection (e.g., due to
side effects such as selling of information in the underground
markets). Then, a forensic analysis team is hired to investigate
how the data was leaked. By analyzing network logs, such as
web proxy logs that report all URLs visited by the corporate
network users, the forensic analysts notice something anoma-
lous (e.g., a particularly suspicious set of URLs) in Bob’s web
logs recorded a week earlier. Therefore, the analysts ask for
authorization to explore Bob’s ChromePic logs. Finally, by
exploring the webshots produced by our system, the analysts
are able to reconstruct the social engineering attack that tricked
Bob into installing the initial malicious software.

By learning how Bob fell for the attack, including obtaining
a precise reconstruction of the visual tricks used for the social
engineering attack, the corporate network security team could
then develop a user training session on social engineering, to
better educate corporate employees on how to decrease the
likelihood of becoming a victim [15]. In addition, by having
both the screenshot taken at the very moment when the user
clicked on the misleading ad, as well as the related full DOM
snapshot, this information could be used to enhance browser-
based defenses against social engineering [3].

Notice that ChromePic enables the reconstruction not only
of the exact moment in which the attack is triggered (e.g.,
a click on a social engineering malware ad), but also of
the sequence of pages with which the user interacted before
falling for the attack. In addition, in case of phishing attacks
ChromePic would also provide an account of the exact infor-
mation the user leaked on the phishing site. Knowing what
information was “phished” may be important to decide what
actions to take to mitigate the damage to both the user and to
the corporate network (e.g., the user may have leaked access
credentials related to sensitive corporate assets).

IV. SYSTEM DETAILS

A. Background

Before we present the details of ChromePic, we first pro-
vide a brief overview on the Chromium browser architecture.
As Chromium’s architecture is fairly complex, we will limit
the following description to highlight only those components
that are needed to understand how our code modifications and
optimizations work.

Chromium uses a multi-process architecture [37], which
includes a main browser process, called Browser, and one
rendering process, called Renderer, per each open browser

Browser 
IO Thread

IPCSend(input)

User

Renderer 
Main Thread

input

Renderer 
Render Thread

Notify(input)
Input 
Processing

Browser 
UI Thread

Send(input)

Fig. 1. Overview of how user inputs to a web page are passed to the Renderer
Thread. Dashed arrows indicate asynchronous calls. Notice that the function
names are intentionally simplified, and do not exactly reflect the (long chains
of) function calls that exists in the source code.

tab1. The Browser runs multiple threads [42], including a UI
Thread, which handles UI events among other things, and
an IO Thread, which handles the IPC communications [36]
between the Browser and all Renderers. Each Renderer is also
multithreaded [35]. The Renderer’s Main Thread is responsible
for communicating via IPC with the Browser, whereas the
Renderer’s Render Thread is responsible for rendering web
content, including executing JavaScript code.

As shown in Figure 1, user inputs to a web page are first
received by the Browser’s UI Thread, and then asynchronously
communicated via IPC (by the IO Thread) to the Renderer that
is responsible for the tab where the page is rendered. The IPC
message will first be processed by the Renderer’s Main Thread,
and then forwarded to the Renderer’s Render Thread [35].
For instance, a click on a hyperlink will be processed by the
Render Thread, to decide wether a navigation event should
be triggered. Furthermore, JavaScript code execution (e.g.,
initiated due to a listener registered on the input event), is
also executed in the context of the Render Thread.

B. ChromePic Overview

Figure 2 provides a simplified overview of how our
ChromePic browser generates a webshot. Notice that all dashed
arrows in the figure represent asynchronous calls.

In response to a user input, ChromePic takes the following
main actions: (1) on the Browser process, it calls Chromium’s
code for taking a screenshot of the current visible tab (see
details in Section IV-D), to which the user input is destined;
(2) it opens a file that will be used to save the DOM snapshot
and passes its file descriptor, fd, to the Renderer, along with
the user input; (3) as the input and fd are received by the
Renderer, it saves the current entire DOM, including embedded
objects and JS code, in MHTML format; (4) once the DOM
snapshot has been saved, the Renderer waits for confirmation
from the Browser that the screenshot taking process has
terminated; only then, (5) the user input is processed using
the original Renderer’s workflow. In this process, notice that
if the screenshot finishes before the DOM snapshot is saved,
there will simply be no delay between steps (3) and (5).

The high-level steps described above allow us to guaran-
tee that each webshot is taken synchronously with the user
input, and no DOM modification due to the current input is
allowed before the webshot is logged, in accordance with the
forensic rigor requirement stated in Section I. Moreover, our
webshot events are transparent to the (possibly malicious)

1In practice, a Renderer may in some cases be responsible for rendering
more than one tab [37]. To simplify our description, in the following we
will assume one tab per Renderer. Also, we will not consider out-of-process-
iframes [38], which are a recent ongoing project.
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Browser 
IO Thread

IPCSend(input, fd)

take tab
screenshot

User

Renderer 
Main Thread

IPCSend(screen_taken)

input

Renderer 
Render Thread

Notify(input, fd)

Notify(screen_taken)

regular input
processing

take DOM
snapshot

TakeScreenshot()

Browser 
UI Thread

Send(input, fd)

wait for 
screenshot...Browser 

File Thread
Save(screen)

Send(screen_taken) webshot
overheadsave to file (fd)

Fig. 2. Simplified view of how ChromePic processes user inputs that trigger a webshot. Dashed arrows indicate asynchronous calls.

page. ChromePic’s code is designed so that after logging
the input can continue its “natural” processing path, and no
information regarding the webshot events is transferred to
the page (notice that while side-channel attacks cannot be
excluded, user input timings are not easily predictable, thus
making detecting the existence of ChromePic a laborious, non-
deterministic endeavor).

Challenges. While the process of taking synchronous screen-
shots may appear straightforward at first, our design of
ChromePic faces two main challenges. First, we had to spend
countless hours to learn the intricacies of the enormous
Chromium code base. The limited documentation for many
of the modules we instrumented forced us to a great deal of
“reverse engineering” of the source code. In fact, our code
modifications had to span not only multiple processes, but also
multiple threads per process (UI, IO, Renderer, GPU, etc.).
In addition, while we strived to limit the number of changes
to existing code as much as possible, to meet our efficiency
requirements we had to engineer a number of optimizations,
so to minimize the webshot overhead shown in Figure 2.

C. Identifying the Target Renderer Process

Every Renderer Process has a corresponding
RenderProcessHost object in the Browser process,
which is used to send and receive IPC messages between
the two processes. Effectively, the RenderProcessHost
represents the Browser side of a single Browser-Renderer IPC
connection [37]. A RendererProcessHost object
communicates with multiple RenderWidgetHost
instances, each one representing one tab in the browser [35].
For every RenderWidgetHost object, we create a custom
SnapshotHandler object whose responsibility is to
coordinate the process of taking webshots for a given
tab. When an input event is received, the responsible
RenderWidgetHost object is identified by the Browser,
and represents the last point in the Browser after which
the event is passed on to the correct Renderer via IPC
message. We take control of the input event just before it
is passed on to the Renderer, and handle the event via our
SnapshotHandler instead. By doing so, we are able to
identify the correct RoutingID for the IPC messages [36],
and therefore we can coordinate the process of taking a
snapshot with the appropriate Render Thread.

D. Taking Screenshots Efficiently

One way to implement the TakeScreenshot func-
tion shown in Figure 2, would be to call Chromium’s

CopyFromCompositingSurface and simply wait for
the CopyFromCompositingSurfaceFinished call-
back (see Figure 3). However, we empirically found that this
process sometimes takes a large amount of time to finish (e.g.,
several hundred milliseconds, depending on the web page).
Obviously, a large latency would be unsustainable for our pur-
poses, as it violates our efficiency requirements. Therefore, we
had to break down and study the details of the process used by
Chromium to satisfy CopyFromCompositingSurface.
While documentation such as [34], [39] helped, this was not
an easy task, as it required a much deeper understanding of
the internals of Chromium’s compositing process than found
in the sparse Chromium project documents.

We then discovered that to efficiently take
synchronous screenshots we could safely use the
process depicted in Figure 3. Specifically, to satisfy
CopyFromCompositingSurface, the Browser relies
on a graphics library (GL) API and assistance from the
GPU (with code running on the GPU process, or GPU
thread in Android [34]). The GL/GPU module in Figure 3
is represented separately from the Browser UI thread
for presentation convenience (to be more precise, the
DrawFrame and GetFrameBufferPixels functions are
actually executed asynchronously within the context of the
Browser’s UI thread. Only the ReadBack part of the screenshot
taking process is executed on the GPU process/thread).

In simplified terms, we can break down the screenshot-
taking process into five main steps: (1) draw (i.e., composite
the layers of) the web page; (2) copy the pixels; (3) crop/scale;
(4) read back the final bitmap; (5) save to file (we execute the
file saving process within the Browser’s File Thread [42]).
However, we found that once step (2) is completed, the
screenshot has effectively been taken, and do not need to
wait for the crop/scale operation before we can “release”
the user input for further processing. Namely, after step (2)
the screenshot content is not going to be influenced by the
processing of the input, even if the input causes the DOM to
change.

The DrawFrame operation is controlled by the compositor
scheduler cc::scheduler, which takes into account factors
such as the device’s v-sync and dynamically establishes a
target rate at which frames are drawn [33]. For instance, on
devices with a v-sync frequency of 60Hz, a frame would
be ideally drawn every ∼16ms. Thanks to these properties,
the time between the arrival of the user input and our
Send(screen_taken) message in Figure 3 is typically on
the order of only few tens of milliseconds (see Section VII).
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GL / GPU 

User

input
CopyFromCompositingSurface()

Browser 
UI Thread

setNeedsCommmit
DrawFrame()

GetFrameBufferPixels()

RequestCopyOfOuput()

Browser 
IO Thread

Send(screen_taken)
PrepareTextureCopyOutputResult()

Result

CropScaleReadBack
CopyFromCompositingSurfaceFinished

IPC message
to Renderer

Browser 
File Thread

Save

TakeScreenshot()

Fig. 3. Overview of how screenshots are taken and the Renderer is notified
(notice that some of the function call names have been shortened and made
more readable for presentation purposes, compared to the source code).

E. Taking “Deep” DOM Snapshots Efficiently

Along with each screenshot, we also take a “deep” DOM
snapshot that not only includes the current structure of the
DOM (at the time of the input), but also the content of
all frames, embedded objects (e.g., images), and javascript
code. To enable these rich DOM snapshots, we apply several
important changes to Chromium’s code for saving web pages
in MHTML format [30]. Specifically, we enhance Chromium’s
code to include javascript code into the DOM snapshots and,
importantly, to significantly improve efficiency. Below, we
focus on detailing these latter code optimizations.

To save a page in MHTML format, Chromium implements
a GenerateMHTML function, which can be called in the
Browser process from the UI Thread. Given a specific tab,
this function is responsible for serializing the tab’s web page
content into MHTML format, and to save it into a file.
However, the Browser does not have direct access to the DOM
of the page in each tab. Therefore, to save the MHTML content
the Browser must rely on the Renderer process. But because
the Renderer executes within a sandbox, it cannot directly open
a file to save the MHTML content. Chromium’s solution is
to (1) open a file in the Browser process; (2) pass the file
descriptor of the already opened file to the Renderer; and (3)
ask the Renderer (via IPC message) to produce the MHTML
content of the main page and each frame it embeds, and to
save it into this file.

Unfortunately, instead of sending only one IPC message to
the Renderer for the entire process, Chromium’s code results
into sending one IPC message to request to save the main page,
as well as one separate IPC message to the Renderer to request
the saving of each frame embedded in the page2. Because
modern complex web pages contain a potentially large number
of frames (e.g., an iframe for each ad embedded in the page),
the full process of serializing and saving the MHTML content
can be quite expensive, lasting from hundreds of milliseconds
to a few seconds. Therefore, using the existing code to take
a DOM snapshot synchronously with each user input would
violate our efficiency requirements.

One of the reasons why the above process is highly ineffi-
cient is that for each IPC that is received, the Renderer creates
a Task, which will (asynchronously) run on the Render

2This approach will be useful in the future, once the out-of-process-iframes
project is completed and the functionality is turned on by default, as discussed
later in the paper.

Thread, at a time decided by the Renderer Scheduler [32].
As mentioned in [33], “the render thread is a pretty scary
place,” due to its complexity. Its execution “routinely stalls
for tens to hundreds of milliseconds [...] on ARM, stalls can
be seconds long” [33]. The reason is that there are many
different types of tasks that share the same Render Thread
processing time. For example, execution commonly stalls due
to the execution of “long” javascript code [41]. Therefore, each
task related to a frame’s MHTML seralization could easily find
itself starving for CPU time, thus bloating the overall time
needed to complete the full DOM snapshot.

To address the above challenges and dramatically reduce
the overhead related to taking DOM snapshots, we use the fol-
lowing approach. Instead of calling GenerateMHTML, thus
generating multiple IPC messages to the Renderer specifically
dedicated to MHTML serialization, we send only one IPC
message to the Renderer. In fact, we piggyback the “take
DOM snapshot” message from the Browser onto the input-
passing IPC message that the Browser already must send to
the Renderer to communicate the user input (see Figure 2). To
this end, we modify the IPCSend(input) IPC message to
also carry a file descriptor parameter, fd, which is related
to a file we explicitly open to allow the Renderer to save
the DOM snapshot. In addition, we instrument the input-
processing task that would normally only process the user
input, so that when its Task is executed it will first serialize
the page into MHTML format, and then simply continue with
the regular user input processing, as shown on the right side
of Figure 2. This guarantees that the DOM snapshot is taken
synchronously with the related user input event, and before
any input-driven DOM changes can occur.

There is one remaining question: how can we serialize
both the main page and all embedded frames, considering that
the original GenerateMHTML code needed to send multiple
IPC messages? To solve this problem, we write new MHTML
serialization code to explicitly traverse the entire frame tree
from the Render Thread, sequentially serialize each frame, and
save the entire DOM snapshot into the file previously opened
by the Browser (in Section VIII we discuss how this process
could be further adapted in the future, once out-of-process-
iframes [38] become enabled by default).

V. ALTERNATIVE IMPLEMENTATION USING EXTENSIONS

In this section, we discuss whether webshots could be
captured using Chrome’s extension API [7]. An extension-
based implementation would be appealing, because it does
not require any browser instrumentation and can easily be
added to existing browser releases. However, we will show
that an extension-based implementation of ChromePic is not
a viable alternative in practice, due to the constraints imposed
by the browser’s extension API itself and to the higher average
overhead associated with webshots produced via the extension.
In the following, we refer to the extension-based version of
ChromePic as ChromePicExt.

A. ChromePicExt Overview

Because our forensic rigor requirement (see Section I)
dictates that webshots must be taken synchronously with
the user input, the content javascript component of
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ChromePicExt must intercept user inputs before any page
javascript code. This goal can be achieved in two steps: (1) by
setting the run_at property in the extension’s manifest file to
document_start; and (2) by registering an event listener
for user input events (e.g., mousedown, keydown, etc.) on
the window object as soon as the content javascript
starts being executed. All ChromePicExt’s event listeners are
registered with the useCapture option set to true, to
guarantee that the content javascript will be the first to
capture and handle the event, before any page javascript has a
chance to receive the same event. In the following, we will use
cnt.js to refer to the extension’s content javascript.

During the interaction between the user and the browser,
if a particular event that ChromePicExt is listening on is fired,
our listener captures it first and passes the event object to
the handler function implemented by the extension. At this
point, ChromePicExt’s cnt.js needs to temporarily stop
the propagation of the event object to any other listeners,
including listeners registered by the web page with which the
user is interacting, until a full browsing snapshot is taken.
This is crucial to ensure that the other event listeners will
not have an opportunity to change the appearance of the web
page before the screenshot and DOM snapshot are recorded.
Notice also that because the execution of javascript code
within each renderer process is single-threaded3 [40], the input
event cannot be processed by any other listener until cnt.js
“yields.” Furthermore, because cnt.js runs in an isolated
world4, the page javascript cannot observe or interfere with
the extension’s event processing.

Once a triggering event is received, to take a
screenshot of the rendered content cnt.js needs to
call the captureVisibleTab API accessible via
the background extension component. At the same
time, cnt.js also needs to produce a snapshot of the
current page’s DOM tree, which could be achieved for
example by asking the background component to call
the pageCapture.saveAsMHTML API. Once both the
screenshot and DOM snapshot are taken, the event can be
released so that the browser can propagate it to other listeners.

Challenges. In Chrome, the content javascript com-
ponent of an extension has limited direct access to the ex-
tension API. The full extension API can be accessed via the
background component. In the following, we refer to the
background extension component as bgnd.js, for short.
The cnt.js and bgnd.js components can communicate via
message passing. For instance, immediately after a user input is
captured, cnt.js can use sendMessage and ask bgnd.js
to call captureVisibleTab, thus producing a screenshot
of the current page with which the user is interacting. Un-
fortunately, the simple approach described above does not
satisfy the forensic rigor requirement for webshots, because
bgnd.js runs in the extension process [6], rather than the
renderer process where cnt.js runs, and the screenshot is
therefore taken asynchronously. Similarly, to take a full DOM
snapshot bgnd.js can make use of saveAsMHTML, but this
also causes the DOM snapshot to be taken asynchronously
w.r.t. the user input. In other words, if the cnt.js simply

3Notice that WebWorkers cannot directly change the DOM.
4https://developer.chrome.com/extensions/content scripts

captures a user event, asks bgnd.js to take a webshot (using
captureVisibleTab and saveAsMHTML) and then im-
mediately “yields,” the event can be propagated by the browser
to other listeners. Therefore, there is no guarantee that the
page javascript will not change the page (DOM and rendering)
before the webshot is actually logged.

Possible Solutions. One possible approach to make the web-
shot taking functionality synchronous may be for cnt.js to
actively wait (e.g., loop) until bgnd.js communicates that
the webshot request has been processed via a callback function.
However, because JavaScript execution within each process is
single-threaded5, this would prevent cnt.js from yielding
to the callback function, because it would need to run in the
renderer process where cnt.js is actively waiting. Therefore,
this would stall the renderer process and thus the web page (we
have empirically verified all observations). Another solution
could be to “sleep,” instead of actively waiting, for example by
leveraging setTimeout or setInterval. However, this
would not solve the problem, because while cnt.js “sleeps,”
it effectively “yields” and the captured user event will trickle
down to the next listeners, thus again violating the requirement
that webshots must be taken synchronously.

One may think that cnt.js could simply capture an
event object, say e, and (1) make a deep copy of the object,
thus creating e′ = e; (2) cancel the propagation of e to
the remaining listeners6; (3) wait until the callback from
bgnd.js indicates that the webshot has been taken; and (4)
re-dispatch the event by injecting e′, so that the browser will
propagate the user event to the remaining listeners. Unfor-
tunately, this will cause the isTrusted property of e′ to
be set to false, thus potentially preventing some listeners
from correctly processing the event. In addition, the value of
isTrusted would allow an attack page to infer the presence
of ChromePicExt, and perhaps stop the attack to prevent it
from being logged/analyzed, thus violating the transparency
requirement (see Section I).

B. Our Approach

To solve the above problems, we proceed as follows. First,
we will focus only on how to synchronously take a screenshot,
and then discuss how to take a DOM snapshot.

Once a message has been sent to bgnd.js to ask for
a screenshot to be taken, cnt.js actively waits for the
screenshot to be completed. However, as mentioned earlier,
cnt.js cannot actively wait for a callback from bgnd.js,
as this would bring cnt.js to stall. Instead, what cnt.js
can do is: (1) explicitly choose the name of the file where
the screenshot should be stored; (2) pass this information to
bgnd.js (via sendMessage) and at the same time ask it to
concretely start the screenshot capturing process; (3) actively
probe the file system using a synchronous XMLHttpRequest
to the local URL 7 to test whether the screenshot file has been
saved (via captureVisibleTab).

5WebWorkers cannot be used in the scenario we are considering.
6Using Event.stopPropagation()
7Notice that this can be enabled in the extension’s manifest file, via the

web_accessible_resources parameter.
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 1. // Save "shallow" DOM snapshot 
 2. var domSnapshot = document.head.outerHTML + document.body.outerHTML;
 3. chrome.runtime.sendMessage(command: "save_dom", dom: domSnapshot);
 4.
 5. // Take screenshot
 6. var md_time = Date.now();
 7. var filename = "snapshots/"+md_time+".png";
 8. var xhr_request = new XMLHttpRequest();
 9.
10. chrome.runtime.sendMessage(command: "take_screenshot", file: filename);
11. while(true) {
12.   try {
13.     xhr_request.open('GET', chrome.extension.getURL(filename), false);
14.     xhr_request.send(null); // send synchronous request
15.     break;
16.   } catch (err) {
17.      // Synchronous XMLHttpRequest has failed
18.   }
19. }    

Fig. 4. Simplified cnt.js source code.

Figure 4 shows a simplified code snippet that implements
the approach outlined above. The synchronous XMLHttpRe-
quest will raise an exception if the file does not exist. In this
case, cnt.js will try again, until the file can be found on disk
(or a maximum number of attempts have been exhausted, as a
safeguard to avoid waiting indefinitely in case of failure at the
extension process side). After cnt.js exits the active wait
loop, the user input event will effectively be “released” and
passed by the browser to the remaining listeners, thus allowing
the processing of the event to continue (e.g., this could trigger
some DOM modification by the underlying page javascript).

Unfortunately, the approach described above cannot
be used to synchronously take a DOM snapshot using
saveAsMHTML. The reason is that while the call to
saveAsMHTML happens asynchronously via bgnd.js,
which runs within the extension process, ultimately
saveAsMHTML will delegate the responsibility of producing
and saving the mhtml representation of the DOM to the
same Renderer process where cnt.js also runs, within the
Render Thread (see Section IV-E). Therefore, if cnt.js
actively waits for the mhtml file to be saved it will simply
wait indefinitely, as the mhtml file cannot be produced until
cnt.js “releases control” of execution on the renderer’s
main thread. One way to avoid this problem is to simply
program cnt.js to save the DOM structure, as shown at
the top of Figure 4. However, this is a much more limited,
“shallow” representation of the DOM, compared to what can
be obtained with saveAsMHTML, because embedded objects
(e.g., the content of images or iframes) are not saved.

The cnt.js could be extended to produce a result that is
more similar to saveAsMHTML. For instance, the content of
images can be accessed by first loading them into a canvas
and then reading the content of the canvas [25]. But this
is a quite cumbersome and inefficient operation. Also, while
cumbersome, it would be possible to communicate (e.g., via
postMessage) to the cnt.js running in the context of the
embedded frames8 to produce a DOM snapshot, which could
then be combined to the DOM of the main page to produce a
more comprehensive, “deep” snapshot of the page.

It should be apparent by now that the extension-based
approach to taking synchronous webshots is sort of a “hack,”
in that it bypasses some of the restrictions imposed by the
browser on cnt.js and its inability to directly access the

8Assuming the all_frames option is set to true in the manifest file.

extension APIs. Furthermore, screenshots cannot be made fully
transparent to the user, because every time a screenshot is taken
the browser visually indicates that a file is being downloaded
(on the bottom of the browser window). In Section VII,
we will also show that the extension-based implementation
of ChromePic imposes a higher overhead, compared to the
browser instrumentation approach described in Section IV.
Overall, this demonstrates that extensions are not suitable for
meeting all of ChromePic’s design requirements.

VI. RECONSTRUCTING ATTACKS ON USERS

In this section, we report on a number of experiments
that demonstrate how ChromePic can capture attacks on users,
and enable their post-mortem reconstruction. Specifically, we
will discuss three attacks, an in-the-wild social engineering
download attack on Android, a phishing attack, and two
clickjacking attacks proposed in [1].

A. Social Engineering Download Attack

During our user study (see Section VII-B), we encoun-
tered an in-the-wild social engineering download attack. Here
is how a user arrived to this attack: (1) The user visits
www.google.com and searches for “wolf of wall street”; (2)
after scrolling the results, the user modifies the search terms by
adding the letter “f” to the search string (see Figure 5a); (3) the
search engine suggests “wolf of wall street full movie” as the
top search suggestion, which is clicked (with a touch screen
tap) by the user; (4) the user then clicks on the top search
result, which redirects the browser to a site called fmovies[.]to;
(5) as the site loads, with no interaction from the user, an
advertisement embedded in the page forces the browser to open
a new tab where a page is loaded from us.intellectual-82[.]xyz;
(6) an alert popup window is immediately shown, which warns
the user that the device is infected by multiple viruses; (7)
clicking on the OK button makes the alert window disappear,
but the user now sees the us.intellectual-82[.]xyz page (which
was previously in the background) claiming that the Android
device is “28.1% DAMAGED because of 4 harmful viruses”
(see Figure 5c) and recommends the user to download an
application called “DU Cleaner”; (8) clicking on a “REPAIR
FAST NOW” button, the user is redirected to the Google Play
store, and specifically to information about an app called GO
Speed9 (not DU Cleaner, as stated on the attack page).

Using ChromePic, we were able to record all main steps
of the attack. In fact, the screenshots in Figure 5 were all
taken by ChromePic and confirm that using the recorded
webshots, the social engineering attack described above can
indeed be reconstructed by tracing back the user-browser
interactions, including tapping on the “REPAIR FAST NOW”
button on the attack page. Naturally, after the user clicks on
this download button and control is passed to the Google Play
app, ChromePic could not follow the next user actions (e.g.,
whether the app was installed or not on the device). This is
expected, as ChromePic is meant to reconstruct all steps of
web-based attacks that unfold within the browser. The GO
Speed app that the user is asked to install seems to be benign,
as it has been installed by a large user base (more than 10M
users, according to Google Play) and an analysis of VirusTotal.

9https://play.google.com/store/apps/details?id=com.gto.zero.zboost&hl=en
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(a) (b) (c)

Fig. 5. Some of the screenshots captured by ChromePic during an in-the-wild social engineering “fake-AV-like” attack on Android.

(a) (b) (c)

Fig. 6. Some of the screenshots captured by ChromePic during a phishing attack (the attack URL was first reported in PhishTank, submission #4359181).

com reports no anti-virus labels10. After analyzing the DOM
snapshots taken by ChromePic, we suspect that the attackers
are trying to monetize an advertisement campaign that pays
for every new “referred” installation of the app. For instance,
the attack page contains a link to click.info-apps[.]xyz and
another to tracking.lenzmx[.]com with a URL query parameter
mb_campid=du_cleaner_tier2. After a mouse click,
the browser is redirected (via HTTP 302 redirections) through
those two sites to the final market:// URL referring to the
GO Speed app. It is likely that the FakeAV-like advertising
tactics employed in this social engineering attack are simply a
way to convince more users to install the app and (illicitly)
increase revenue, in a way similar to how pay-per-install
networks [19], [43] monetize third-party software installations.

There is a small exception to be noted. ChromePic did not
take a screenshot of the alert popup window, which should
have been triggered by the user clicking on the OK button
to close the popup. The reason is that alert windows are
rendered “out of context” w.r.t. to browser tabs, and our
current implementation of ChromePic does not support taking
a snapshot when users interact with such alert windows (we
plan to add support for alert windows in future releases of
ChromePic). However, it is worth noting that by analyzing
the DOM snapshots taken as the user interacted with the
attack page (at us.intellectual-82[.]xyz) we were able to also
reconstruct the content of the alert popup:

WARNING ! This Google Pixel C is infected with viruses and
your browser is seriously damaged. You need to remove viruses
and make corrections immediately. It is necessary to remove
and fix now. Don’t close this window. ** If you leave , you
will be at risk **

B. Phishing Attack

Besides tracing-back the steps followed by users who reach
an attack page, ChromePic can also assist in understanding

10sha1: 811b367c4901642ae41b4b8f0167eac2d3ac4039

how the user interacted with the attack itself. For instance, in
the case of phishing attacks, our webshots capture a wealth
of information about what data was leaked by the user. To
demonstrate this, we present an example of a recent phishing
attack posted on PhishTank (submission #435918111).

After using ChromePic to visit the phishing URL, which
impersonates a Brazilian banking website, we simulated the
actions of a user who falls for the attack by providing fake
information (due to format-checking javascript, we had to
figure out how to provide fake but syntax-compliant data).
Figure 6 shows some of the snapshots taken by ChromePic as
we interacted with the attack website. Unlike other phishing
attacks, which are often limited to stealing the victim’s login
credentials, this attack is fairly sophisticated as it attempts
to reproduce the entire banking site. Once the user logs in
(by providing his/her CPF12 code), the site claims the balance
of the user’s bank account has been hidden (presumably for
security purposes) and must be recovered. As the user clicks
on a menu bar link, the site requires the victim to fill in a set
of security codes, as shown in Figure 6b. Notice that here the
attacker is attempting to essentially steal the user’s entire secu-
rity code card13. By doing so, the attackers will subsequently
be able to perform any bank transaction operation without
being blocked by the real bank’s security mechanisms. Finally,
after the user provides the security code card information, the
phishing site also requests the user’s telephone number and
password (Figure 6c). Once this information is provided, the
site shows a “loading” animation that makes the user believe
his/her data is being verified (not shown in Figure 6 due to
space constraints). But at this point the attack has already
succeeded.

11http://www.phishtank.com/phish detail.php?phish id=4359181
12https://en.wikipedia.org/wiki/Cadastro de Pessoas F%C3%ADsicas
13An English language explanation of how security code cards are used in

financial applications can be found at this link: https://www.interactivebrokers.
com/en/?f=%2Fen%2Fgeneral%2FbingoHelp.php
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Fig. 7. Destabilizing pointer perception clickjacking attack.

C. ClickJacking Attacks

To demonstrate how ChromePic is able to also capture
clickjacking attacks, we reproduced two attacks described
in [1]: the Destabilizing Pointer Perception attack and the
Peripheral Vision attack. The (simulated) attacks, which we
adapted from publicly available code14 by the authors of [1],
are available at https://chromepic.github.io/clickjacking 15.

Destabilizing Pointer Perception: The attack is shown in Fig-
ure 7. In this attack, the user intends to click on a “here”
hyperlink. However, as the mouse pointer approaches the link,
the following events occur: (1) a fake pointer is drawn that
has a left-side displacement error, compared to the real pointer
(which is hidden); (2) as the user brings the fake pointer on top
of the link, the real pointer is actually located on the Facebook
Like button; (3) because the Like button is rendered within
a third-party frame, the attack javascript cannot hide the mouse
pointer at this time, therefore, the attack instead draws other
random mouse pointers to confuse the user and effectively
prevent the user from noticing that the real mouse pointer is
over the Like button; (4) as the user attempts to click on
“here,” the real click actually occurs on the Like button, thus
completing the clickjacking attack.

Figure 7 shows the screenshot taken by ChromePic at the
mouse down event. The center of the red circle is the exact
location where the user input event occurred. Notice that the
fake mouse pointers are captured by the screenshot, including
the pointer located over “here.” At the same time, the real
mouse pointer is not captured in the screenshot, because it
is drawn by the OS, not rendered by the browser (only the
fake pointers are rendered by the browser). Nonetheless, the
coordinates of the real input event are recorded in our webshot,
and it is therefore straightforward to find the correct location
of where the real mouse pointer was located and draw the
red circle accordingly over the screenshot. Also, by analyzing
the DOM snapshots produced by ChromePic, it is easy to
recover the fact that the mouse is hidden via CSS (using
cursor:none), and to also get the full source code for
the javascript functions that enable the attack, including the
creation of fake mouse pointers (see Figure 8).

Peripheral Vision: In this attack, the objective is to attract the
user’s attention towards an area of the screen that is far from
where the mouse clicks actually occur. To this end, a game is
setup, as shown in Figure 9. In this game, the user needs to
click on the Play button on the bottom left of the screen, so
to catch the moving L or R blocks within the purple box on the
right side of the screen. Because the user’s attention is drawn

14http://wh0.github.io/safeclick-blast/list.html
15The original attack code is currently broken due to a missing remote file;

after analyzing the code we found an easy fix and we were able to recreate
the attacks.

function distract() {
    var img = document.createElement('img');
    img.className = 'random';
    img.src = 'http://i.imgur.com/EWmYMN2.png';
    img.style.top = Math.random() * 160 + 160 + 'px';
    img.style.left = Math.random() * 160 + 240 + 'px';
    playarea.appendChild(img);
    var dummy = img.clientHeight;
    img.style.top = Math.random() * 160 + 160 + 'px';
    img.style.left = Math.random() * 160 + 240 + 'px';
    setTimeout(function () {
        playarea.removeChild(img);
    }, RANDOM_MOVE_TIME);
}

Fig. 8. Reconstruction of code for generating fake pointers from ChromePic’s
DOM snapshots.

Fig. 9. Two screenshots that capture the peripheral vision clickjacking attack.

to the right side, while the clicks occur on the bottom left, the
user may not notice that at some random convenient time the
attacker may replace the Play button with a Facebook Like
button. If the mouse click occurs when the Like button is
displayed, the clickjacking attack succeeds.

Figure 9 shows two screenshots, taken at two different
mousedown events. In the screenshot on the left, the user
clicks on the real Play button. The screenshot on the right
shows that at the second mousedown event the Play button
had temporarily (for only one second) been replaced with the
Like button, which received the user’s click. As can be seen,
ChromePic correctly captured the two events (the center of the
red circle represents the exact location where the user clicked).
Notice that this attack again has a significant visual component
that would be difficult to reconstruct by analyzing only the
page DOM, and that we were able to correctly capture it thanks
to ChromePic’s ability to take screenshots synchronously with
the user inputs.

VII. PERFORMANCE EVALUATION

In this section, we present a set of experiments dedicated
to measuring the overhead introduced by webshots.

A. Experimental Setup

Our ChromePic browser is built upon Chromium’s code-
base version 50.0.2626.2. Our source code modifications
amount to approximately 2,000 lines of C++, which we plan
to make available to the security research community.

We evaluate ChromePic on both Android 6.0 on a Google
Pixel-C tablet with an Nvidia X1 quad-core CPU and 3GB
of RAM, as well as on two machines running Linux Ubuntu
14.04: a Dell Optiplex 980 desktop machine with a quad-core
Intel Core-i7 processor and 8GB of RAM, and a Dell Inspiron
15 laptop with a Core-i7 CPU and 8GB of RAM.
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TABLE I. DATA COLLECTED DURING User Study 1

Platform # Users Browsing time Sites visited Pages visited Pages visited WebShot events
(minutes) (webshots on) (webshots off)

Android 16 363 92 480 479 2428
Linux laptop 15 346 80 777 746 2145

Linux desktop 11 286 65 369 404 1376
Total 22 (unique) 995 204 (unique) 1626 1629 5949

B. User Study Setup

User Study 1: To evaluate the overhead imposed by our code
changes to Chromium, we perform a user study involving 22
distinct users (with IRB approval). Specifically, we compile
our ChromePic browser for both Linux and Android, and ask
the study participants to use the devices described earlier for
generic Internet browsing activities. Users were allowed to
freely browse any site of their choosing. The only restriction
we imposed was to avoid visiting any website containing
personal data, such as online banking sites, their Facebook
page, etc., to avoid recording any sensitive information. Each
user was asked to perform one or more browsing sessions
on different devices, with each session lasting approximately
15 minutes. Each user completed no more than two separate
browsing sessions per device (a few users used only the
Android and Linux laptop devices, and did not browse on the
desktop Linux machine). Overall, we collected 363 minutes
of browsing activity on the Android tablet from 16 different
users, 346 minutes on the Linux laptop from 15 users, and
286 minutes on the Linux desktop from 11 users (more
than 16.5 hours of browsing overall), which included several
thousands input events per device. The users visited more
than 1,600 different web pages (i.e., URLs) on 204 distinct
web sites (i.e., different effective second-level domains, in-
cluding google.com, youtube.com, amazon.com, and several
other highly popular sites), producing close to 6,000 webshots
overall. Table I reports a summary of the data we collected.

For this study, the browser was setup so that webshots are
active only on randomly selected pages. Namely, every time
the user navigates to a new page, the browser “flips a coin” and
decides if the webshot logging capabilities should be activated
or not (other experiments described later had the webshot logs
always on). The reason for this is that we wanted to measure
and compare the time needed by the browser to process input
events with and without our code changes, to demonstrate that
our webshots do not impose any other input processing delay,
besides the actual time to record the logs. We comment on the
results of this experiment in Section VII-C (see also Figure 11).

User Study 2: We also performed a smaller targeted user
study involving 4 different users browsing on the Linux laptop
device (with webshots always on). In this study, we asked the
users to login into sites such as Facebook, Gmail, Twitter,
Google Drive, etc., using a “temporary” account we created
only for this study, which therefore contains no true personal
information. This experiment aimed at evaluating ChromePic’s
overhead during activities such as writing emails, writing
Facebook/Twitter posts, writing a GoogleDoc text document,
etc. Overall, we collected 53 minutes of browsing time. The
experimental results are discussed in Section VII-C.

User Study 3: Finally, we performed a separate small user
study involving 6 users to evaluate the performance of
ChromePicExt, the extension-based implementation that at-

tempts to record browsing snapshots similar to the webshots
recorded by ChromePic (see Section V). We discuss the related
results in Section VII-C.

C. ChromePic Performance Measurements

User Study 1: In Table II, we report a breakdown of the
overhead measurement results performed on browsing traces
collected during our User Study 1. Specifically, we report
the 50th percentile (i.e., the median) and 98th percentile
of the time required for taking screenshots, “deep” DOM
snapshots, and for the total webshots time. All numbers are
in milliseconds.

To better explain how the measurements in Table II are
obtained, let u(t0) be a user input event that occurs at
time t0, which triggers a webshot. Also, let tsn be the
time at which the screen_taken notification is sent in
Figure 3 from the GL module to the Browser IO Thread.
Namely, this is the time when the screenshot has actually
been captured, and the user input can be processed (see
Section IV-D). On the other hand, let tsc be the time when the
CopyFromCompositingSurfaceFinished callback is
called. We define the screenshot notification time as (tsn−t0),
the screenshot callback time as (tsc − t0).

Similarly, let td be the time at which the DOM snapshot
has been saved, and the user input can be further processed,
as discussed in Section IV-E (see also Figure 2), and δf be
the time taken to save the DOM snapshot to file using the
MHTML format. The DOM snapshot time with file write is
computed as (td − t0), whereas DOM snapshot time w/o file
write is equal to (td − δf − t0), which therefore excludes the
time needed to copy the snapshot to file. The reason why we
measure this latter quantity is that with some more engineering
effort the DOM snapshot file saving process could be moved to
a separate Renderer process thread, thus effectively decreasing
the overhead imposed by the DOM snapshot logging.

The total webshot time is computed as (max{tsn, td}−t0),
according to the discussion provided in Section IV. This time
could be further reduced to (max{tsn, (td − δf )} − t0) by
offloading the DOM file saving process to a separate Renderer
process thread (we leave this implementation task to future
releases of ChromePic).

Figure 10 shows the distribution of the total time needed
to log the webshots on different devices, while Table II reports
a breakdown of the webshot times into their components
(50th- and 98th-percentiles). On both Linux devices (laptop
and desktop) 98% of all webshots are logged in less than
120ms. This is a very good result, because any latency below
150ms is practically unnoticeable to users [44]. On Android,
98% of webshots are logged in less than 264ms, with a median
time of around 78ms. While the 98th-percentile time is higher
than our 150ms target, it is still a low overhead that is on
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TABLE II. User Study 1 - PERFORMANCE OVERHEAD (50TH- AND 98TH-PERCENTILE)

Platform Total Total Screenshot Screenshot DOM snapshot time DOM snapshot time
with file write (ms) w/o file write (ms) notification time (ms) callback time (ms) with file write (ms) w/o file write (ms)

Android 78.05, 263.06 59.53, 203.01 13.02, 25.88 65.67, 109.97 77.55, 261.81 58.86, 202.38
Linux laptop 39.16, 118.43 33.32, 109.55 5.38, 27.68 36.17, 71.05 38.95, 118.26 33.12, 109.38

Linux desktop 22.36, 93.19 19.02, 76.11 2.74, 23.80 38.95, 118.04 22.11, 85.86 18.74, 70.53
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Event Duration (ms) - mouse, key press deltas and webshot overheads
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Mouse click deltas (1278)
Key press deltas (1089)
Laptop webshots (2117)
Tablet webshots (2428)
Desktop webshots (1361)

Fig. 10. Time needed to take webshots and comparison with mouse-down/up
and key-down/up time deltas (the number of events on which the CDFs are
computed are in parenthesis).

the very low end of the “noticeable” latency classification
provided in [44]. Also, our results indicate that 82.02% of
all webshots on Android can be taken in less than 150ms.
Furthermore, notice that the total overhead is driven by the
DOM snapshot time, including saving the DOM to file, rather
than the screenshot notification time. From Table II, we can
see that the 98th-percentile of the total webshot logging time
for Android could be reduced to roughly 203ms if file saving
was delegated to a separate thread in the Renderer process. In
addition, in this setting 89.33% of the webshots on Android
would take less than 150 ms.

To further put our results into perspective, we also com-
pared the time needed to take webshots to the time in between
mouse-down/up and key-down/up events. In other words, we
measure the time that it takes for a user to lift her finger
from the mouse button or from a key. The mouse-down/up and
key-down/up time deltas are measured on the Linux desktop,
with webshots turned off. As we can see from Figure 10, the
distribution (CDF) of webshot overhead times on the Linux
laptop and desktop are always to the left of the mouse-down/up
and key-down/up time deltas curves. Because we start the
webshot log at the down event, this means that in the vast
majority of cases when a mouse click or a key press occurs,
the webshot will be fully logged by the time the user raises her
finger. Also, the Android tablet curve is almost entirely to the
left of the mouse-down/up and key-down/up curves, showing
that even on Android the webshots can be taken efficiently.

Another result worth noting is that our screenshot code
optimizations, described in Section IV-D, yield a very signifi-
cant overhead improvement, as can be seen by comparing the
notification time and callback time in Table II.

To verify that our webshots do not negatively impact the
subsequent “natural” input processing times, in Figure 11 we
also compare the amount of time taken by the browser to
process a user input in two different cases: when webshots
are disabled (dashed line), and when the input is processed
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0.0

0.2

0.4

0.6

0.8

1.0
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Fig. 11. Comparison of “natural” input event processing time with and
without webshots enabled (the number of events on which the CDFs are
computed are in parenthesis).

right after a webshot has been logged (solid line). Specifically,
let t0 be the time when the Browser sends a user input u to
the Renderer, and ti be the time when the Renderer confirms
to the Browser that the input has been processed (we use
Chromium’s LatencyInfo objects to measure this). Also,
let t′i be the “input processed” confirmation time related to
events that triggered a webshot, and δw be the time delta
needed to log a webshot. The first (dashed) curve measures
(ti− t0), which represents the “natural” input processing time.
Similarly, the second (solid) curve measures (t′i − δw − t0),
which represents the time needed by the browser to process
the input after a synchronous webshot has been taken (see
Figure 2). As can be seen, the two curves are very similar,
indicating no unexpected delay to the natural input processing
time due to webshot events. In other words, the webshots do
not cause any other delays, besides the actual time to take the
webshots, δw.

User Study 2: As discussed in Section VII-B, we separately
measured the overhead for user activities on popular web
sites, such as Facebook, Twitter, Gmail, Google Drive, etc.
We recorded thousands of user input events, 1,910 of which
triggered a webshot. Of these webshots, 50% were processed
in less than 66ms, and 98% took less than 240ms. Furthermore,
80% of all the webshot took less than 150ms. After closely
analyzing the measurements, we found that the slight increase
in overhead, compared to User Study 1, was due to DOM
snapshots on Gmail, due to how the page is structured (e.g.,
Gmail pages embedded a larger number of iframe’s and had
a larger DOM size). Specifically, the 98th-percentile for the
total webshot time on Gmail was around 245ms. The times on
all other popular sites (Facebook, Twitter, Google Docs, etc.)
were in line or even lower than those obtained in User Study
1. For instance, on Facebook the 98th-percentile was less than
120ms. Overall, if we exclude Gmail from this experiment,
98% of the webshots can be taken in 108ms.

User Study 3: For comparison purposes, we also measured the
performance of taking screenshots using the extension-based
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TABLE III. AVERAGE STORAGE REQUIREMENTS (MBS/MINUTE)

Platform Uncompressed Compressed
Screenshots DOM Screenshots DOM

Android 6.80 11.62 0.31 0.54
Linux laptop 4.66 11.33 0.15 0.88

Linux desktop 2.31 8.07 0.09 0.83

approach discussed in Section V. These have been done on the
desktop machine, and the results should therefore be compared
to the third row of Table II. Also, notice that in this experiment
we are only considering the screenshot time (as explained in
Section V, it is not easy to take synchronous “deep” DOM
snapshots via the extension API). We found that 50% of
screenshots require at least 140ms and 98% of them require
243ms. This is in contrast with the 2.74ms and 23.80ms,
respectively, that are required by the browser-based version of
ChromePic. Furthermore, the extension times are much larger
than the total time needed to take a full webshot (including the
DOM) on the desktop machine using the instrumented browser
solution (see Table II). This reinforces our conclusion that an
extension-based solution is not only cumbersome, as discussed
in Section V, but also much less efficient.

D. Storage Requirements

Table III shows the storage requirements for archiving the
webshots produced during User Study 1. After a straightfor-
ward compression process (converting screenshots to JPG and
using lossless compression for DOM snapshots), the webshots
take a maximum of 1.03MB per minute of browsing on the
Linux laptop. Android logs required only 0.85MB/minute of
storage, and 0.92MB/minute on the desktop machine. This
space requirements could be further reduced by using lossy
compression on the DOM-embedded images, for instance by
converting them to a low- or medium-quality JPG.

Let’s now consider a scenario in which ChromePic is de-
ployed in a corporate network setting. Assume that in average
users spend half of their working time (4 hours/day) browsing,
while the other half is spent on other tasks (meetings, devel-
opment, design, data analysis, etc.). If we assume 22 business
days per month, and 1.03MB of storage needed per minute of
browsing (i.e., the maximum amount we observed), a single
user would produce less than 6GB of webshot logs per month.
In a corporate network with 1,000 users, this would result in
less than 6TB of storage for an entire month of browsing logs
for the network, or 72TB for an entire year of logs. Considering
that a multi-TB hard drive currently costs only a few hundreds
US dollars, an entire year of webshot logs could be archived
for only a few thousand US dollars. In alternative, considering
that business-grade cloud-based storage services are currently
priced at less than $0.03/GB per month, archiving one entire
year worth of webshots for the entire corporate network in the
cloud would cost less than $2,200 per month16.

VIII. DISCUSSION

There exist some corner cases in which it is not possible
to “freeze” the state of the DOM/rendering immediately after
a user input arrives. For instance, if a user input arrives while

16Estimated using http://calculator.s3.amazonaws.com/index.html (with
Cold HDD)

the Render Thread is already executing another task, such as
a long-running javascript program that affects the DOM, the
processing of the user input will have to wait until javascript
terminates, and until its own Task is scheduled for execution
(see Section IV-E). The net effect is that the DOM snapshot
will reflect the state of the DOM after the already running
javascript code terminates. Notice, however, that this is also
true for “natural” input processing. Namely, the input will
apply to the modified DOM, regardless of whether a webshot
is taken or not. Therefore, our snapshots correctly reflect
the state of the DOM at the time when the input becomes
effective. Similarly, because screenshots need to wait for the
compositor to redraw, the exact instant in time in which the
screenshot is taken is determined by the cc::scheduler
(see Section IV-D). If an animation is in progress on the page,
it may be possible for the screenshot to be one (or a very small
number of) frame(s) “off” w.r.t. the user input. Again, this also
holds for “natural” input processing (i.e., even if webshots
were disabled), because the input may become effective after
a redraw.

In Section IV-E, we mentioned that once the out-of-
process-iframes (OOPIFs) [38] project is completed and be-
comes active by default, we will need to slightly adapt our
code for taking DOM snapshots. In fact, we believe that
OOPIFs would allow us to further decrease the time needed
to take a snapshot. The reason is as follows. Assume the user
interacts (e.g., clicks on a link) with a page that embeds several
iframes (e.g., to display different ads). In the current imple-
mentation, both the main page and iframes are processed
in the same Renderer process. Therefore, the DOM of the
main page and all iframes has to be produced at once,
synchronously with the input (see Section IV-E). But with
OOPIFs we could produce all these partial DOM snapshots
in parallel by simply sending a “take DOM snapshot” IPC
message to the main page and all iframes at the same time.

Because ChromePic continuously logs user-browser inter-
actions and takes screenshots, the recorded logs may contain
sensitive user information. We argue that the solutions pro-
posed in [26] could also be readily applied to ChromePic’s
output. For instance, ChromePic could employ a customizable
whitelist of sites on which webshots should be turned off. To be
more strict, ChromePic could be prevented from logging any
events on pages loaded via HTTPS that have a valid (not self-
signed) TLS certificate. Furthermore, a “helper” application
(or a separate browser thread) could be responsible for contin-
uously gathering and encrypting the browser logs. Specifically,
because ChromePic can log a unique ID for each new browser
tab, all logs can be easily attributed to their own specific tab.
Thus, the helper application could perform the following high-
level actions: (1) generate an encryption key for every new
tab; (2) encrypt all logs related to a tab with that tab’s key;
(3) once the tab is closed (or earlier), store the key into a key
escrow [8], along with meta-data related to the user/machine,
the time when the tab was opened and closed, and the set of
domain names visited within the tab; (4) “forget” the tab’s key.

The key escrow could be owned by the user or, in enterprise
environments, by the machine’s administrator, and the keys
released only when a security investigation is called for.
In addition, because each tab can be stored separately and
encrypted with a different key, investigators can be selectively
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given access only to some tabs rather than the entire browsing
history. The decision on whether to authorize the decryption
of a tab would depend on the specific investigation, but could
for instance be based on the time frame in which the attack
is suspected to have happened, and on the list of domains that
have been visited within the tab, which can be recorded as
meta-data and encrypted with a “global” key. We leave the
engineering of this key escrow-based system to future work.

IX. RELATED WORK

The analysis of security incidents is often hindered by the
lack of necessary logs. As mentioned in [20], “it is all too
often the case that we tend to lack detailed information just
when we need it the most.” The existing logging functionalities
provided by modern operating systems and browsers are often
insufficient to precisely reconstruct an attack. Below we dis-
cuss previous works that aim to enhance logging and improve
the ability to investigate security incidents.

Enhanced Logging. To enable the analysis of security in-
cidents, Kornexl et al. [18] propose a network “Time Ma-
chine,” whose goal is to efficiently record detailed information
extracted from network traffic. The purpose of this system
is to support forensic analysis and network troubleshooting.
To increase efficiency and allow for storing network traffic
information for long periods of time, Time Machine only
records the first portion of each network connection. Even with
partial recordings, [18] demonstrates that this approach enables
the analysis of security incidents. Krishnan et al. [20] propose
a virtualization-based forensic engine to keep track and record
access to data objects read from disk. The proposed system
follows the chain of access operations on the objects as they
are copied into memory and accessed by different processes.
The output is an audit log that enables the reconstruction of
the sequence of data changes. Ma et al. [23] develop a low
cost audit logging system for Windows, which aims to enable
accurate attack investigation and significant log reduction.

The instrumentation of Chrome has been proposed in the
past in different security contexts. For example, Bauer et al. [5]
propose an information-flow tracking system that allows for
enforcing fine-grained browser security policies. Excision [2],
is an instrumentation of Chrome that aims at detecting and
blocking the inclusion of malicious third-party content into
web pages. To this end, Excision keeps track of the origin of
third-party content to be loaded as part of the page.

Our ChromePic system is different, in that it ams to
introduce fine-grained logging in Chromium to enable the
recording and post-mortem investigation of web-based attacks,
with particular focus on attacks on users that have a significant
visual component.

Record-and-Repaly Systems. ReVirt’s main goal is to enable
whole-system record-and-reply [11]. To this end, it uses a
virtualization-based approach to log detailed information about
a VM’s guest system execution instruction-by-instruction. This
enables deterministic replay of the entire system, thus also al-
lowing an exact replay of previously recorded intrusions. Other
whole-system record-and-replay engines, such as PANDA [10],
share similar goals. Whole-system record-and-replay is expen-
sive and difficult to deploy on resource-constrained mobile

devices. To obviate these problems, Neasbitt et al. propose We-
bCapsule [26], which aims to enable browser-level record-and-
replay. WebCapsule is implemented by instrumenting Blink,
Chrome’s rendering engine. Because recording occurs at a
higher level, compared to [11], WebCapsule does not allow
for fully deterministic replay. On the other hand, WebCapsule
is portable to multiple platforms, including mobile devices.

ChromePic is different from the above systems, in that it
does not aim to enable replay. Rather, our system aims to
introduce very low overhead, and to record enough detailed
information about the state of the browser to enable an accurate
reconstruction of web-based attacks towards users, especially
for attacks with a significant visual component, such as social
engineering and phishing.

Automated Incident Investigation. WebWitness [28] is an inci-
dent investigation system that leverages deep packet inspection
to reconstruct the steps followed by users who reach social
engineering or drive-by malware download pages. The system
relies on full network packet traces to performs a (network-
based) analysis of both the content of web pages and the way
in which the content is requested (e.g., by analyzing referrers
and HTTP redirections), and is able to reconstruct the web
browsing path that brought the user to the final attack page.
Unlike WebWitness, which is purely based on an analysis of
network traces using a set of heuristics and inference methods,
ClickMiner [27] aims to reconstruct the path to an attack page
by replaying network traces into an instrumented browser.

BackTracker [17] is a system for automatically recon-
structing the sequence of steps followed by an attacker to
compromise a machine. Given an initial detection point, such
as a malicious file identified by a security analyst, BackTracker
traces back processes and files that have a causal relation to
the detection point, by leveraging OS-level logs. The final
result is a dependency graph that explains what system objects
affected (or caused) the presence of the malicious file on
disk, thus potentially revealing the attacker’s entry point into
the system. Taser [12] and RETRO [16] use OS-level logs
and perform forward tracking to identify and recover form
intrusions, whereas other recent works [21], [22], [24] have
focused on improving accuracy in backward- and forward-
tracking of intrusions, and on reducing the space for OS logs.

Our work is different from the systems discussed above, in
that ChromePic’s main goal is to produce highly efficient fine-
grained browser logs that could be used to enable and improve
the accuracy on automated incident investigation systems.

X. CONCLUSION

In this paper, we presented ChromePic, a web browser
equipped with a novel forensic engine whose goal is to greatly
enhance the browser’s logging capabilities. ChromePic enables
a fine-grained post-mortem reconstruction and trace-back of
web attacks without incurring the high overhead of record-
and-replay systems. ChromePic works by recording a detailed
snapshot of the state of a web page, including a screenshot
of how the page is rendered and a “deep” DOM snapshot, at
every significant interaction between the user and web pages.
If an attack is later suspected, these fine-grained logs can be
processed to reconstruct the attack and trace back the sequence
of steps the user followed to reach the attack page.
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We developed ChromePic by implementing several careful
modifications and optimizations to the Chromium code base,
to minimize overhead and make always-on logging practical.
Using both real-world and simulated web attacks, we demon-
strated that ChromePic can successfully capture and aid the
reconstruction of attacks on users. Our evaluation included the
analysis of an in-the-wild social engineering download attack
on Android, a phishing attack, and two different clickjacking
attacks, as well as a user study aimed at accurately measuring
the overhead introduced by our forensic engine. The experi-
mental results showed that browsing snapshots can be logged
very efficiently, making snapshot logging events practically
unnoticeable to users.
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